「物理屋」さん

以前からたびたび触れているように MRI では、スピンが測定原理の中心にデンと居座っているため、医療者であっても何らかの理解は必要だ。

私も「高校で習う物理からの類推+歴史的な導入背景の把握」でこの概念を理解した方がいいのでは?みたいなことを提案した。(こことかこことか)
だが、これには限界があることも知っている。ニュートリノという素粒子では、奇妙なことに電荷がなくてもスピンがあることが知られているからだ。
実用的には、どのようなプロセスで理解していってもかまわないと思うのだが、最終的には「スピンとは、素粒子の基本的属性の一つであり、古典的には理解し難いが、その振る舞いを予測する理論も存在する。自然はそういう風につくられている」と受けとめるしかないと思う。
物理学では、こういった概念が多い。われわれが人間として日常的に経験している現象の延長では決して正確にイメージできないが、いくつかの実証的な実験結果と理論(数式)から、その振る舞いを予測したり、実在性を確信したりするしかない類の概念だ。

ところで、常日頃から、このような概念を頭の中で飼っていて、それらを用いてあーだこーだと思考を巡らせている集団がいる。俗っぽくは「物理屋」さんと言う。大学では、理学系の物理学科というところに集中して棲息している。

本人たちは大真面目にやっているのだが、傍目からは奇妙なものに映るようだ。目に見えないものを対象にしている場合が多いから、頭の中のイメージを共有するような感じで議論を進めたりする。よく他学部の人からは「目隠し将棋でもしてるんですか?」とからかわれたりもする。

だが、このような抽象的・論理的な思考様態は、それなりに有効なようで、他の領域に移っても結果を出すことがある。クリックによる DNA の二重らせん構造の発見などは、その最たる例だろう。

物理的な計測をやっている人ならけっこう同意してもらえるんではないかと。

「二重らせん」を読み返す

あたりがイイ線ついていると思う。

 

猪股弘明(精神科医、理学士)

 

医療画像の fusion とは?

今回は医療画像の fusion (一種の画像合成)のお話。
諸々の事情で MR(Magnetic Resonance 磁気共鳴)系の fusion を取り扱っていた。

なお、MRI って何?って方は、『MRI とは? -その1-』・『MRI とは? -その2-』・『MRI とは? -その3-』あたりをご覧ください。特に『その2』のスピンの説明はけっこう好評のようです。

 

しかし、MRI のプロトン密度強調画像程度でことが済んでいればいいんですが、この分野の技術進歩は速い。「拡散」強調(という撮像法。水分子の「拡散」というより「移動」といった方が正確なような気もしますが、ここでは慣例に従います)などは、以前より脳梗塞急性期の診断などに使われている。

大脳右半球に広範な梗塞像(白いところ)が見られる

上の画像は、脳梗塞の拡散強調像(DWI… Diffusion Weighted Image)です。拡散「強調」とは言うものの、実際に撮像するときは、移動しているプロトンからの信号を抑えるような工夫をするので、水分子が動きにくくなっている部位は、高信号になります。梗塞部位に含まれる水分子は、正常組織に比べ「動きにくく」なっているため、結果として梗塞部位は高輝度(白い)領域となって描出されます。

拡散強調画像は、基本 T2 強調画像をベースにしているので、本当に知りたい水分子の挙動(大抵の病変部で水分子は「見かけ」上、拡散しにくくなる。梗塞しかり、癌しかり)を取り出したい。このとき元の拡散強調画像より T2 などの影響を排除するため ADC(Appearant Diffusion Coefficient 「見かけ」の拡散定数) Map というのをつくる。
症例によっては DWI では異常を認めず、ADC Map で低信号(ときには高信号)となって描出されることがあるからだ。
水分子の拡散の度合いを知る上ではこの ADC Map は大変便利なのだが、その反面、組織のコントラストが普段見慣れているそれと違って形態などが読み取りにくい。ストレートに言えば「どこを見ているかわかりにくい」のだ。

この欠点を補うため、解剖学的な形態が読み取りやすい T1 強調画像に ADC Map を適宜「着色」した画像を重ね合わせると、医療者にとって「どこで何がおこっているか」直感的に理解しやすい画像が得られる。

一般に特定の情報を持った画像とそれとは別の情報を反映した画像を「位置を合わせて」合成して表示させることを fusion と言います。PET と CT の fusion はよく知られた例です。(参考:『PET/CT フージョン画像』)

右側頭葉(画像では左)に何かありますね

今回は、T1 強調に ADC Color Map ともいうべき画像を fusion させたわけです。もちろん、HorliX 使いまくり。規格(DICOM)があることゆえ私一人では決められない問題もあったりするのですが、目処がたったらプラグインの形でまとめたいと思っています。

 

猪股弘明(精神科医、理学士)

 

ラジエーションハウスと SWI

えらくマニアックなところに目を付けたフジ月9ドラマ「ラジエーションハウス」、通称「ラジハ」。

こんなドラマやってたんだ。

漫画の1話目を読んだが、主人公がやったのは、SWI(Susceptibility Weighted Image 磁化率強調画像)というやつかな?

(Zスライスが選択された上で)座標(x, y)の位相θは

θ(x,y)=∫γ{B0 + (Gx・x + Gy・y)}dt    積分範囲は 0~TE

となるらしい。

B0 = μ0(1 + χm)H

なる関係があるから、組織間で磁化率 χm が違えば、それがコントラストとなってあらわれる、というのが理屈だろうか。(なお、銀歯は銀-パラジウムなどの合金。特にパラジウムは磁化率が 5.15×10-6と周囲の組織より高い)

実際には、銀歯の影響でボケてしまった強度画像に、位相画像から磁化率(か、関連数値)を逆算して取得し、それを強度画像に作用させ、隠れていたコントラストを描出させた、ということでしょうか。

漫画では、phantom.tif という TIFF 画像を読み込んできてなんかやってますね。ファントムでのデータを使って補正までかけるという芸の細かさw

猪股弘明(精神保健指定医)


MRI の基礎をすっ飛ばしていきなり応用編となってしまいましたが、もうちょっと基本から説明したものを某調剤薬局さんのブログに寄稿しましたので、ご興味があればご一読ください。

MRI とは?-その1-

MRI とは?-その2-』(「スピン」の説明してあります。測定原理的にはここがキモでしょうか)

MRI とは?ーその3ー

私も MRI の専門家ではないんですが、これくらいの知識があると画像の解釈がいくらか正確になるかと。